
yeah!!!!!!

Gator: Toward a Correct Technology Mapper
A talk from your pal Andrew!!!

Hardware Compilation
First, what does a software compiler do?

// TODO @(bsaiki): andrew, do we need this?
int add_some_stuff() {

a = 1;
b = 2;
c = 3;
return (a + b) & c;

}

movq %rdi, $1
movq %rsi, $2
movq %rdx, $3
addq %rdi, %rsi
andq %rax, %rdx

High-level source code Low-level implementation,

expressed as a series of assembly instructions

Hardware Compilation
What does a hardware compiler do?

module my_design
(input a,
 input b,
 input c,
 output out);
assign out = (a + b) & c;

endmodule

High-level design fragment
Low-level implementation,

expressed as

hardware primitives

module my_design

(input a,

 input b,

 input c,

 output out);

 wire mid;

 adder a0(.a = a, .b = b, .o = mid);

 ander a1(.a = mid, .b = c, .o = out);

endmodule

Hardware Compilation
What does a hardware compiler do?

module my_design
(input a,
 input b,
 input c,
 output out);
assign out = (a + b) & c;

endmodule

High-level design fragment
Low-level implementation,

expressed as

a picture on a rock

+

&

LUT4

• 4-bit truth table

• Has state: internal memory

Primitives are complex!

DSP48E2

• Common use cases:

• barrel shifting

• SIMD operations

• (a + b) * c & d

• Can be pipelined for 3 cycles

Primitives are complex!

What can the DSP48E2 actually do?
Primitives are complex!

What does it mean for a primitive to be correct?
How do we know a DSP configuration is correct?

• If the DSP is configured correctly, then for some time t, it should:

• compute the correct result on time t, which is true if

• it had correct state on time (t - 1), which is true if:

• it had correct state on time (t - 2), which is true if:

• it had correct state on time (t - 3), which is true if:

• ... shoot!

What does it mean for a primitive to be correct?
How do we know a DSP configuration is correct?

• If the DSP is configured correctly, then for some time t, it should:

• compute the correct result on time t, which is true if

• it had correct state on time (t - 1), which is true if:

• it had correct state on time (t - 2), which is true if:

• it had correct state on time (t - 3), which is true if:

• ... shoot! Solution from Vivado: don't provide
these correctness guarantees!

Do correctness guarantees
actually matter?

Verified Compilation in Software

Does this
actually
matter?

Verified Compilation in Software

Does this
actually
matter?

yeah

Verified Compilation in Software

Does this
actually
matter?

yeah Okay, let's use
CompCert

Verified Compilation in Hardware

Does this
actually
matter?

Verified Compilation in Hardware

Does this
actually
matter?

yeah

Verified Compilation in Hardware

Does this
actually
matter?

yeah The CompCert
of hardware?

Formally Verified Hardware Compilation

Formally Verified Hardware Compilation

"Lutsig’s technology mapped output netlists for this class of FPGAs
contain only k-LUT (with k ≤ 6) and carry4 cells"

Formally Verified Hardware Compilation

What about my DSP!? 🤬

If a hardware compiler is extensible,
support for additional primitives can be

added with little user effort.

If a hardware compiler is extensible,
support for additional primitives can be

added with little user effort.

In general, hardware compilers aren't extensible!

Lakeroad: an extensible compilation tool
• Lakeroad uses program synthesis to map high-level designs to low-level

hardware primitives.

• Lakeroad reasons about what a primitive can do through automatic
extraction of SMT semantics from vendor-provided simulation models.

Lakeroad: an extensible compilation tool
• Lakeroad uses program synthesis to map high-level designs to low-level

hardware primitives.

• Lakeroad reasons about what a primitive can do through automatic
extraction of SMT semantics from vendor-provided simulation models.

• If someone wants to support a new DSP, they've got to:

Lakeroad: an extensible compilation tool
• Lakeroad uses program synthesis to map high-level designs to low-level

hardware primitives.

• Lakeroad reasons about what a primitive can do through automatic
extraction of SMT semantics from vendor-provided simulation models.

• If someone wants to support a new DSP, they've got to:

• Download the simulation model

Lakeroad: an extensible compilation tool
• Lakeroad uses program synthesis to map high-level designs to low-level

hardware primitives.

• Lakeroad reasons about what a primitive can do through automatic
extraction of SMT semantics from vendor-provided simulation models.

• If someone wants to support a new DSP, they've got to:

• Download the simulation model

• Write a short sketch
DSP

Lakeroad: an extensible compilation tool
• Lakeroad uses program synthesis to map high-level designs to low-level

hardware primitives.

• Lakeroad reasons about what a primitive can do through automatic
extraction of SMT semantics from vendor-provided simulation models.

• What does the workflow of Lakeroad actually look like?

DSP

Lakeroad's Compilation Flow

(a + b)
ALU

1. Download the simulation model

(a + b)
ALU

ALU.v

1. Download the simulation model

(a + b)
ALU

ALU.v

I can add and multiply!

1. Download the simulation model

(a + b)
+ or *

ALU.v

I can add and multiply!

2. Set up a sketch

(a + b)
+ or *

ALU.v

I can add and
multiply!

a

b

out

3. Lakeroad's synthesis query:

(a + b)

+

ALU.v

I can add and
multiply!

a

b

out

def impl(a, b, t):
 return a + b

def sketch(a, b, t):
return a (+ or *) b

assert (forall a, b,
impl(a, b, 1) == sketch(a, b, 1) and
impl(a, b, 2) == sketch(a, b, 2)

Lakeroad's correctness guarantees
• Lakeroad's program synthesis query does a "bounded model synthesis"

where correctness for the first few cycles is formally guaranteed.

• ...but this doesn't account for all the other cycles!

• Lakeroad provides some guarantees for correctness, but not full guarantees.

assert (forall a, b,
impl(a, b, 1) == sketch(a, b, 1) and
impl(a, b, 2) == sketch(a, b, 2)

A Survey of Hardware Compilers
Ex

te
ns

ib
le

Correct

Vivado

Lutsig

Lakeroad

A Survey of Hardware Compilers
Ex

te
ns

ib
le

Correct

Vivado

Lutsig

Lakeroad

?

A Survey of Hardware Compilers
Ex

te
ns

ib
le

Correct

Vivado

Lutsig

Lakeroad

🐊 The Gator™ Project™ ©:
• Goal: a hardware compiler which is correct and extensible.

• What if we modify Lakeroad's synthesis query so that it's correct for all time?

∀i : spec(i,1) = impl(i,1) ∧ spec(i,2) = impl(i,2)

∀i, t : t > init → spec(i, t) = impl(i, t)

Demo Time! (maybe)

Thank you!!

