Gator: Toward a Correct Technology Mapper

A talk from your pal Andrew!!!

Hardware Compilation

First, what does a software compiler do?

// TODO @(bsaikil): andrew, do we need this?
int add_some_stuff() {

a
b
C

w N - |

° \V)

°
J

J

(a + b) & c;

High-level source code

movqg %rdi, S1
movq %rsi, S$2
———l movg %rdx, $3
addq %rdi, %rsti
andqg %rax, %rdx

Low-level implementation,
expressed as a series of assembly instructions

Hardware Compilation

What does a hardware compiler do?

module my_design module my_design

, (input a,
(}npUt I input b,
input b, input c,
input c, —) output out);
output out); wire mid;
assiagn out = (a +b) & c: adder a0(.a = a., .b=b, .0 =mid);
ander al(.a = mid, .b = c, .o = out);
endmodule

endmodule

Low-level implementation,

High-level design fragment expressed as
hardware primitives

Hardware Compilation

What does a hardware compiler do?

module my design

(input a, e

input b, a—

input c, —

output out); —— —

assign out = (a + b) & c;
endmodule

Low-level implementation,
High-level design fragment expressed as
a picture on a rock

Primitives are complex!
LUT4

e 4-pit truth table

 Has state: internal memory

Primitives are complex!
DSP48E2

e Common use cases:
* barrel shifting

 SIMD operations
e (a+b) *c&d

e Can be pipelined for 3 cycles

CARRYCASCOUT"

o

4

!

CREG/C Bypass/Mask

MULTSIGNIN®

CARRYCASCIN®

' BCOUT* ACOUT 0 —

| RND =

|

| 48 AB

| A18 /30 7

| 18 0—
B | 18/ // 18

7 Dual B Reqgister pa

| 18 . -

A | 1 R :z“7M>J<L1T s 1M |v
30

I — 30// r_

|

l Dual A, D, |, 27 0—

' a0l and Pre-adder d 1=
D, 2, S
c, =]

' 4 Lol c H—no

I //4 //2 17-Bit Shift

| . 17-Bit Shift

| INMODE .

rd
| CARRYIN|
| OPMODE 9, ,E
rd

CARRYINSEL

|

!_ BCIN* ACIN*

PATTERNDETECLI
ot

PATTERNBDETECT|

—

PCIN*

. P

*These signals are dedicated routing paths internal to the DSP48E2 column. They are not accessible via general-purpose routing resources.

X16752-042617

Primitives are complex!
What can the DSP48E2 actually do?

increase in challenge for technology mappers [6]. The UltraScale+ DSP48E2 has over 100 ports

and parameters, and the manual that explains how to configure them properly is over 75 pages
long [10]. The large number of ports and parameters is due to the fact that these primitives

/A

| ain’t reading all that

I'm happy for u tho

or sorry that happened

What does it mean for a primitive to be correct?
How do we know a DSP configuration is correct?

* |f the DSP is configured correctly, then for some time t, it should:
 compute the correct result on time t, which is true if
* it had correct state on time (t - 1), which is true if:
* it had correct state on time (t - 2), which is true if:
* it had correct state on time (t - 3), which is true if:

e ... shoot!

What does it mean for a primitive to be correct?
How do we know a DSP configuration is correct?

* |f the DSP is configured correctly, then for some time t, it should:
 compute the correct result on time t, which is true if
* it had correct state on time (t - 1), which is true if:
* it had correct state on time (t - 2), which is true if:

* it had correct state on time (t - 3), which is true if:

* ... shoot! Solution from Vivado: don't provide
these correctness guarantees!

Do correctness guarantees
actually matter?

Verified Compilation in Software

Does this

actually
matter?

Verified Compilation in Software

Does this

actually
matter?

Finding and Understanding Bugs in C Compilers

Xuejun Yang Yang Chen Eric Eide John Regehr

University of Utah, School of Computing
{jxyang, chenyang, eeide, regehr }@cs.utah.edu

Verified Compilation in Software

Does this Okay, let's use

actually —)
matter?

CompCert

Verified Compilation in Hardware

Does this

actually
matter?

Verified Compilation in Hardware

Does this

actually
matter?

Finding and Understanding Bugs in FPGA Synthesis Tools

Yann Herklotz John Wickerson
yann.herklotz15@imperial.ac.uk j.wickerson@imperial.ac.uk
Imperial College London Imperial College London

London, UK London, UK

Verified Compilation in Hardware

Does this The CompCert

of hardware?

actually
matter?

Formally Verified Hardware Compilation

Lutsig: A Verified Verilog Compiler
for Verified Circuit Development

Andreas LOoow

Chalmers University of Technology
Gothenburg, Sweden

Formally Verified Hardware Compilation

Lutsig: A Verified Verilog Compiler
for Verified Circuit Development

Andreas LOoow

Chalmers University of Technology
Gothenburg, Sweden

"Lutsig’s technology mapped output netlists for this class of FPGAs
contain only k-LUT (with k < 6) and carry4 cells"

Formally Verified Hardware Compilation

Lutsig: A Verified Verilog Compiler
for Verified Circuit Development

Andreas LOoow

Chalmers University of Technology
Gothenburg, Sweden

What about my DSP!? @

O CakeML |/ hardware

ode (-) Issues 9 Pullrequests (») Actions () Security |~ Insights

vy Star 23

& hardware ruic

(> Watch 42 ~ Y Fork 5

¥ master ~ P 5 Branches © 0 Tags

. AndreasLoow Manual merge of reviving word extract support, thanks @j4nk1

ag32

compiler

examples

misc

translator

verilog

verilog_parser

.gitignore

.holpath

LICENSE

README.md

hardwareMiscScript.smil

hardwarePreamble.sml

oracleScript.sml

sumExtraScript.sml

L]
L]
[
[
[
[
L]
b
D
O
O
h
D
b
D
O

wordsExtraScript.sml

Q Add file

opentheory reader documentation
handle indexing and slicing for internal inputs
More cleanup: newTranslator -> translator

Reorganization (move around some directories etc.)

Manual merge of reviving word extract support, thanks @j...

handle indexing and slicing for internal inputs

Lutsig v2

Lutsig v2

Add .holpath

BSD 3-clause license

More cleanup: newTranslator -> translator

Lutsig v2

Lutsig v2

Lutsig v1

Lutsig v2

Split into multiple directories

8264e60 - last year

v

<> Code ~

Y 117 Commits

last year

last year

3 years ago

3 years ago

last year

last year

3 years ago

3 years ago

© years ago

© years ago

3 years ago

3 years ago

3 years ago

4 years ago

3 years ago

© years ago

About

Verilog development and verification
project for HOL4

Readme
BSD-3-Clause license
Activity

Custom properties

23 stars

42 watching

5 forks

Report repository

Contributors 3

‘ AndreaslLoow Andreas Loow

A | Y
e s xrchz Ramana Kumar
e i

‘ acjf3

Languages

Standard ML 94.4%

Haskell 1.1%

Python 0.7%
Makefile 0.1%

SystemVerilog 2.3%
Ruby 0.8%
Verilog 0.6%

O CakeML |/ hardware

ode (-) Issues 9 Pullrequests (») Actions () Security |~ Insights

& hardware ruic

¥ master ~ P 5 Branches © 0 Tags Q

‘ AndreasLoow Manual merge of reviving word extract support, thanks @j4nk1

opentheory reader documentation
handle indexing and slicing for interna
More cleanup: newTranslator -> trang
Reorganization (move around some d
Manual merge of reviving word extrad
handle indexing and slicing for internz
Lutsig v2
Lutsig v2
Add .holpath
BSD 3-clause license

README.md More cleanup: newTranslator -> tran

hardwareMiscScript.smil Lutsig v2

hardwarePreamble.sml Lutsig v2

oracleScript.sml Lutsig v1

sumExtraScript.sml Lutsig v2

® SystemVerilog 2.3% Haskell 1.1%

wordsExtraScript.sml Split into multiple directories 6 years ago Ruby 0.8% Python 0.7%
® Verilog 0.6% Makefile 0.1%

O CakeML |/ hardware

ode (-) Issues 9 Pullrequests (») Actions () Security |~ Insights

. hardware Public &> Watch 42 ~ % Fork 5 vy Star 23

¥ master ~ §

and verification
‘ Andreas

ag32

compiler

examples

misc

translator

verilog

verilog_pa

.gitignore

.holpath

LICENSE | N | _' - ¥ dreas LoGw

| . ‘

README.

hardware
N

[V
hardwareP

a
el
oracleScri

- B
sumExtraScript.smi Lutsig v2 3 years ago ® Standard ML 94.4%
SystemVerilog 2.3% Haskell 1.1%

L]
L]
[
[
[
[
L]
b
D
O
O
h
D
b
D
O

wordsExtraScript.sml Split into multiple directories 6 years ago Ruby 0.8% Python 0.7%
Verilog 0.6% Makefile 0.1%

If a hardware compiler is extensible,
support for additional primitives can be
added with little user effort.

If a hardware compiler is extensible,
support for additional primitives can be
added with little user effort.

In general, hardware compilers aren't extensible!

Lakeroad: an extensible compilation tool

* | akeroad uses program synthesis to map high-level designs to low-level
hardware primitives.

» | akeroad reasons about what a primitive can do through automatic
extraction of SMT semantics from vendor-provided simulation models.

Lakeroad: an extensible compilation tool

* | akeroad uses program synthesis to map high-level designs to low-level
hardware primitives.

» | akeroad reasons about what a primitive can do through automatic
extraction of SMT semantics from vendor-provided simulation models.

* |f someone wants to support a new DSP, they've got to:

Lakeroad: an extensible compilation tool

* | akeroad uses program synthesis to map high-level designs to low-level
hardware primitives.

» | akeroad reasons about what a primitive can do through automatic
extraction of SMT semantics from vendor-provided simulation models.

* |f someone wants to support a new DSP, they've got to:

e Download the simulation model

Lakeroad: an extensible compilation tool

* | akeroad uses program synthesis to map high-level designs to low-level
hardware primitives.

» | akeroad reasons about what a primitive can do through automatic
extraction of SMT semantics from vendor-provided simulation models.

* |f someone wants to support a new DSP, they've got to:
 Download the simulation model

e Write a short sketch

Lakeroad: an extensible compilation tool

* | akeroad uses program synthesis to map high-level designs to low-level
hardware primitives.

» | akeroad reasons about what a primitive can do through automatic
extraction of SMT semantics from vendor-provided simulation models.

 What does the workflow of Lakeroad actually look like?

Lakeroad's Compilation Flow

1. Download the simulation model

ALU.v

1. Download the simulation model

| can add and multiply!

1. Download the simulation model

| can add and multiply!

2. Set up a sketch

a
— el
b

| can add and
% multiply!

ALU.v

3. Lakeroad's synthesis query:

def impl(a, b, t):
return a + b

def sketch(a, b, t):
return a (+ or *) b

assert (forall a, b,
impl(a, b, 1) == sketch(a, b, 1) and
impl(a, b, 2) == sketch(a, b, 2)

| can add and
multiply!

Lakeroad's correctness guarantees

| akeroad's program synthesis query does a "bounded model synthesis"
where correctness for the first few cycles is formally guaranteed.

e ...but this doesn't account for all the other cycles!

» | akeroad provides some guarantees for correctness, but not full guarantees.

assert (forall a, b,
impl(a, b, 1) == sketch(a, b, 1) and
impl(a, b, 2) == sketch(a, b, 2)

Extensible

A Survey of Hardware Compilers

Correct

Extensible

A Survey of Hardware Compilers

Correct

A Survey of Hardware Compilers

Extensible

Correct

» The Gator™ Project™ ©:

 Goal: a hardware compiler which is correct and extensible.

 What if we modify Lakeroad's synthesis query so that it's correct for all time?

Vi: spec(i,l) = impl(i,1) A spec(i,2) = impl(i,2)

i

Vi, t:t> init — spec(i,t) = impl(i, t)

Demo Time! (maybe)

Thank you!!

