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FPGA hardware primitives are complex; high-level operations which traditionally consisted of many low-level
gates can now be implemented with single units such as digital signal processors (DSPs). These units are
powerful because they can be programmed to implement specific behaviors. However, taking full advantage of
this programmabilty is difficult. FPGA synthesis tools were originally built to support architectures consisting
only of simple primitives such as lookup tables (LUTs). As a result, these tools lack the capability to fully
reason about the behavior of complex units like DSPs. This directly affects the quality of compiled designs,
as failure to map an eligible design to DSPs can result in orders of magnitude of performance degradation.
In this paper, we explore the limitations of current tools with regard to complex primitives—specifically, the
Xilinx UltraScale+ DSP48E2. We conduct a survey of FPGA synthesis tools targeting the DSP48E2, attempting
to map a number of common designs onto the DSP using each tool. We present a number of simple designs
which existing state of the art tools fail to map, highlighting these tools’ inability to completely reason about
complex primitives.
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1 INTRODUCTION
Technology mapping — the process of outputting a low-level, FPGA-specific implementation of a
high-level design fragment — is a critical step of FPGA synthesis. Traditionally, FPGA synthesis
tools were built to support simple FPGA architectures whose primitives consisted primarily of
simple LUTs (lookup tables) [1, 7] . Recently, more complex hardware primitives have become
commonplace. These primitives, such as DSPs (digital signal processors), present a significant
increase in challenge for technology mappers [6]. The UltraScale+ DSP48E2 has over 100 ports
and parameters, and the manual that explains how to configure them properly is over 75 pages
long [10]. The large number of ports and parameters is due to the fact that these primitives
are programmable, i.e., they have complex behaviors which can be controlled by configuring (or
programming) their inputs. Ideally, a technology mapper should be complete for each primitive;
that is, for a given primitive, if a high-level design can be implemented using that primitive, then
the technology mapper should find a mapping of the design to that primitive. This is summarized
in our “completeness theorem”:

∀𝑣 ∈ 𝑉𝑒𝑟𝑖𝑙𝑜𝑔, 𝑝 ∈ 𝑃𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒, J𝑣K = J𝑝K → 𝑝 ∈𝑚𝑎𝑝 (𝑣)
A complete technology mapper that satisfies this theorem would allow for the thorough use of any
primitive that it supports. But how complete are mainstream technology mappers? No methodology
exists to define or measure this. This paper provides the first study to answer these questions.
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for workload in workloads:
for bitwidth in [8, 16]:

for signedness in [True, False]:
for num_stages in [1, 3]:

for apply_xor_reduction in [True, False]:
generate_design(workload,

bitwidth, signedness, num_stages,
apply_xor_reduction)

(* use_dsp = "yes" *)
module submulor_2_stage_signed_9_bit(

input signed [8:0] a,
input signed [8:0] b,
input signed [8:0] c,
input signed [8:0] d,
output [8:0] out,
input clk);

logic signed [17:0] stage0;
logic signed [17:0] stage1;

always @(posedge clk) begin
stage0 <= ((d - a) * b) | c;
stage1 <= stage0;

end

assign out = stage1;
endmodule

Fig. 1. Left: Pseudocode of the core algorithm used by Cookie to generate high-level Verilog designs. Right:
An example design output by Cookie. (* use_dsp = "yes" *) tells the synthesis tool that the design should
map to a DSP48E2.

Currently, mainstream FPGA synthesis tools make no guarantee about their completeness across
primitives. Yosys [9], an open-source FPGA synthesis tool, leverages automated algorithms to
synthesize designs to simple primitives such as LUTs [1]. However, complex primitives such as DSPs
are only partially supported with handwritten patterns. The implementation of proprietary tools
such as Vivado [11] remains opaque, and therefore cannot be analyzed. However, conversations
with industrial teams have confirmed that similar approaches are used in industry.

While handwritten patterns may be sufficient to target simple primitives, it is unclear how
they handle the problem of completeness. With such complex primitives that can implement such
a wide range of functionalities, completeness is a critical property that is needed in order for
these tools to make full use of a primitive. DSPs are units that are computationally powerful, but
this power is lost if tools do not map to them effectively. Forum posts from hardware designers
suggest a lack of completeness, usually because tools are not efficiently mapping designs down to a
single complex primitive. To make matters worse, these posts also imply that hardware designers
need to implement designs in a specific coding style to get these tools to recognize the high-level
design [2–4]. In summary, current discourse implies that mainstream synthesis tools are leveraging
mechanisms such as handwritten patterns that cannot fully reason about the complexity of DSPs.
In this paper, we build Cookie, a testing framework aimed at assessing the completeness of

mainstream FPGA synthesis tools as they relate to complex primitives. We find that even for simple
operations such as a multiply add followed by a bitwise xor, state of the art tools cannot fully
support putting the design onto a DSP48E2.

2 APPROACH AND INSIGHT
Cookie is a testing tool that analyzes the completeness of proprietary tools. We initially scope
Cookie to the Xilinx UltraScale+ architecture, and generate high-level designs that should map to
the Xilinx UltraScale+ DSP48E2.

According to the DSP48E2 user guide, the primitive should support operations such as multipli-
cation, multiply accumulate, and multiply add. Furthermore, an ALU on the unit should support
logical operations such as XOR following an arithmetic operation.

Currently, Cookie assesses a tool’s correctness through exhaustive generating variants of a single
workload. Figure 1 shows the general implementation of Cookie and a sample design generated.
It is built in Python and iterates through different variations of these workloads. Variations are
generated across three dimensions: bitwidth, number of stages, and signedness.
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Table 1. An initial survey of Yosys and SOTA’s performance across a series of workloads. The workload column
contains the general design, “Signed?” indicates signedness with a ✓ and unsignedness with a X, “# Stages”
shows the number of pipeline stages, and Yosys/SOTA/Lakeroad show resource allocation. ✓ symbols in
“Verif?” and “Valid?” show that we verify and validate the correctness of Lakeroad’s single-DSP designs.

Workload Signed? # Stages Yosys SOTA Lakeroad Verif? Valid?
((d + a) * b) | c X 1 1 DSP, 20 LUT 1 DSP, 10 LUT 1 DSP ✓ ✓
((d - a) * b) | c ✓ 2 1 DSP, 20 LUT 1 DSP, 10 LUT 1 DSP ✓ ✓
((d - a) * b) ^ c ✓ 3 1 DSP, 22 LUT 2 DSP, 11 LUT 1 DSP ✓ ✓
((d + a) * b) & c ✓ 3 1 DSP, 22 LUT 2 DSP, 11 LUT 1 DSP ✓ ✓
((d + a) * b) ^ c X 2 1 DSP, 18 LUT 1 DSP, 9 LUT 1 DSP ✓ ✓

3 PRELIMINARY RESULTS
We run preliminary experiments using the canonical designs generated by Cookie on Yosys and
a state of the art, industrial-grade FPGA synthesis tool (SOTA). Tools that map these designs
should be placed on a single DSP48E2, and this is verified through synthesizing these designs using
Lakeroad, an FPGA synthesis tool under active development which utilizes program synthesis to
map to complex primitives.
Figure 1 shows an example design generated by Cookie. If either Yosys or SOTA fails to map

a design onto a single DSP48E2, we use Lakeroad to verify that the design can be mapped to a
single DSP48E2. Because Lakeroad uses program synthesis, its outputs are correct by construction;
the design is automatically verified. In addition, we further validate Lakeroad’s design through
randomized testing with Verilator 5.009 on 10000 input points.

Figure 1 shows a sample of initial results. For each workload, Yosys and SOTA fail to synthesize
the operation down to a single DSP48E2. The degree of failure varies across designs — in the best
case, SOTA only adds an additional 9 LUTs, yet in the worst case it uses an additional DSP and 11
LUTs. It is clear from this initial survey that mainstream tools have obvious holes in completeness.
Therefore, the creators of these tools could use Cookie’s testing paradigm to improve the quality of
their designs.

4 FUTURE DIRECTIONS
This initial survey has revealed that even for simple workloads, existing tools cannot fully utilize
complex programmable primitives. In addition to the dimensions of variation shown in this paper,
coding style is an additional variation worth exploring. Hardware designers should not have to
adhere to a specific coding style for tools to map their designs. For example, writing a multiply as
𝑏 ∗ 𝑎 instead of 𝑎 ∗ 𝑏 should not significantly alter the output of the tool. To explore this dimension
of change, we are working on extending Cookie to explore generating equivalent implementations
of a workload. Mutant generation is a promising technique for this purpose [5].
This approach is novel because it differs from traditional mutation testing. Typically, mutation

testing relies on the pruning of “equivalent mutants”, i.e., variations of programs that are functionally
equivalent [8]. However, Cookie will only generate equivalent mutants to assess for the difference
in coding style. Currently, Cookie generates “easy”, canonical workloads. This provides a foundation
from which we can apply mutation testing to assess the variation in implementation that occurs in
the real world. Therefore, in future work we will assess how equivalent variations also may cause
these tools to fail.
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